/** * \file firmware/modelibmmodelm.c * \brief Hardware specific part for IBM Host keyboard * \author Ronald Schaten * \version $Id: modelibmmodelm.c 173 2009-02-14 21:11:43Z rschaten $ * * License: GNU GPL v2 (see License.txt) */ #include #include #include #include #include #include "keycodes.h" #include "tools.h" #include "modelinterface.h" /* ----------------------- hardware I/O abstraction ------------------------ */ #define PORTCOLUMNS PORTB ///< port on which we read the state of the columns #define PINCOLUMNS PINB ///< port on which we read the state of the columns #define DDRCOLUMNS DDRB ///< port on which we read the state of the columns #define PORTROWS1 PORTA ///< first port connected to the matrix rows #define PINROWS1 PINA ///< first port connected to the matrix rows #define DDRROWS1 DDRA ///< first port connected to the matrix rows #define PORTROWS2 PORTC ///< second port connected to the matrix rows #define PINROWS2 PINC ///< second port connected to the matrix rows #define DDRROWS2 DDRC ///< second port connected to the matrix rows #define PORTROWS3 PORTD ///< third port connected to the matrix rows #define PINROWS3 PIND ///< third port connected to the matrix rows #define DDRROWS3 DDRD ///< third port connected to the matrix rows uint8_t curmatrix[20]; ///< contains current state of the keyboard uint8_t oldmatrix[20]; ///< contains old state of the keyboard uint8_t ghostmatrix[20]; ///< contains pressed keys that belong to a ghost-key situation void hardwareInit(void) { // column-port is input PORTCOLUMNS = 0xff; DDRCOLUMNS = 0x00; // row-ports are output PORTROWS1 = 0xff; DDRROWS1 = 0x00; PORTROWS2 = 0xff; DDRROWS2 = 0x00; PORTROWS3 |= ((1 << PIND4) | (1 << PIND5) | (1 << PIND6) | (1 << PIND7)); DDRROWS3 &= ~((1 << PIND4) | (1 << PIND5) | (1 << PIND6) | (1 << PIND7)); // port D contains USB (D0, D2), // and keyboard rows (D4, D5, D6, D7). // so we call it PORTD instead of PORTJUMPERS or PORTLEDS PORTD &= ~((1 << PIND0) | (1 << PIND2)); // deactivate pull-ups on USB-lines DDRD |= ((1 << PIND0) | (1 << PIND2)); // set reset USB condition. // USB reset by device only required on watchdog reset _delay_us(11); // delay >10us for USB reset DDRD &= ~((1 << PIND0) | (1 << PIND2)); // remove USB reset condition // configure timer 0 for a rate of 12M/(1024 * 256) = 45.78Hz (~22ms) TCCR0 = 5; // timer 0 prescaler: 1024 } /** * Print the current state of the keyboard in a readable form. This function * is used for debug-purposes only. */ void printMatrix(void) { for (uint8_t i = 0; i <= 19; i++) { char buffer[10]; /* sprintf(buffer, "%d%d%d%d%d%d%d%d.", (curmatrix[i] & (1 << 0) ? 1 : 0), (curmatrix[i] & (1 << 1) ? 1 : 0), (curmatrix[i] & (1 << 2) ? 1 : 0), (curmatrix[i] & (1 << 3) ? 1 : 0), (curmatrix[i] & (1 << 4) ? 1 : 0), (curmatrix[i] & (1 << 5) ? 1 : 0), (curmatrix[i] & (1 << 6) ? 1 : 0), (curmatrix[i] & (1 << 7) ? 1 : 0)); */ sprintf(buffer, "%2x", curmatrix[i]); sendString(buffer); if ((i == 7) || (i == 15)) { sendString(":"); } else { sendString("."); } } sendString("---"); } void toggle(void) { // not used in this model/version } void setSpeed(uint8_t speed) { // not used in this model/version } void setLeds(uint8_t LEDstate) { // do nothing, since we don't have fancy lights on this hardware } /** * The keymatrix-array contains positions of keys in the matrix. Here you can * see which row is connected to which column when a key is pressed. This array * probably has to be modified if this firmware is ported to a different * keyboard. * \sa modmatrix */ const uint8_t PROGMEM keymatrix[20][8] = { // 0 / 0x01 1 / 0x02 2 / 0x04 3 / 0x08 4 / 0x10 5 / 0x20 6 / 0x40 7 / 0x80 {KEY_KPenter, KEY_Reserved, KEY_Reserved, KEY_Reserved, KEY_Reserved, KEY_Reserved, KEY_RightArrow, KEY_Application }, // 0 {KEY_KPcomma, KEY_KP3, KEY_Reserved, KEY_KP9, KEY_Reserved, KEY_KPslash, KEY_KP6, KEY_Reserved }, // 1 {KEY_KP0, KEY_KP2, KEY_Reserved, KEY_KP8, KEY_Home, KEY_KPequals, KEY_KP5, KEY_Reserved }, // 2 {KEY_Reserved, KEY_Reserved, KEY_End, KEY_PageDown, KEY_Insert, KEY_PageUp, KEY_DeleteForward, KEY_UpArrow }, // 3 {KEY_Reserved, KEY_Return, KEY_Reserved, KEY_KP7, KEY_DELETE, KEY_KPBackspace, KEY_KP4, KEY_DownArrow }, // 4 {KEY_slash, KEY_hash, KEY_lbracket, KEY_P, KEY_minus, KEY_0, KEY_semicolon, KEY_apostroph }, // 5 {KEY_Reserved, KEY_dot, KEY_Reserved, KEY_O, KEY_Reserved, KEY_9, KEY_L, KEY_Reserved }, // 6 {KEY_Reserved, KEY_comma, KEY_rbracket, KEY_I, KEY_equals, KEY_8, KEY_K, KEY_Reserved }, // 7 {KEY_F12, KEY_F11, KEY_F9, KEY_F8, KEY_F6, KEY_F5, KEY_F3, KEY_F2 }, // 8 {KEY_F24, KEY_F10, KEY_F21, KEY_F7, KEY_F18, KEY_F4, KEY_F15, KEY_F1 }, // 9 {KEY_F23, KEY_F22, KEY_F20, KEY_F19, KEY_F17, KEY_F16, KEY_F14, KEY_F13 }, // 10 {KEY_N, KEY_M, KEY_Y, KEY_U, KEY_6, KEY_7, KEY_J, KEY_H }, // 11 {KEY_B, KEY_V, KEY_T, KEY_R, KEY_5, KEY_4, KEY_F, KEY_G }, // 12 {KEY_Reserved, KEY_C, KEY_Reserved, KEY_E, KEY_Reserved, KEY_3, KEY_D, KEY_Reserved }, // 13 {KEY_Reserved, KEY_X, KEY_Reserved, KEY_W, KEY_Reserved, KEY_2, KEY_S, KEY_Reserved }, // 14 {KEY_Euro, KEY_Z, KEY_Reserved, KEY_Q, KEY_grave, KEY_1, KEY_A, KEY_Reserved }, // 15 {KEY_Reserved, KEY_Reserved, KEY_Reserved, KEY_Reserved, KEY_Reserved, KEY_Reserved, KEY_Reserved, KEY_Reserved }, // 16 {KEY_Reserved, KEY_capslock, KEY_Copy, KEY_Tab, KEY_Again, KEY_Reserved, KEY_Paste, KEY_Find }, // 17 {KEY_Spacebar, KEY_KP1, KEY_Execute, KEY_Undo, KEY_Stop, KEY_Menu, KEY_Select, KEY_Cut }, // 18 {KEY_Reserved, KEY_LeftArrow, KEY_Reserved, KEY_KPminus, KEY_Reserved, KEY_KPasterisk, KEY_KPplus, KEY_Reserved }, // 19 }; /** * The modmatrix-array contains positions of the modifier-keys in the matrix. * It is built in the same way as the keymatrix-array. * \sa keymatrix */ const uint8_t PROGMEM modmatrix[20][8] = { // contains positions of modifiers in the matrix // 0 1 2 3 4 5 6 7 {MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 0 {MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 1 {MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 2 {MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 3 {MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 4 {MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 5 {MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 6 {MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 7 {MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 8 {MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 9 {MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 10 {MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 11 {MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 12 {MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 13 {MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 14 {MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 15 {MOD_SHIFT_LEFT, MOD_SHIFT_RIGHT, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_ALT_RIGHT }, // 16 {MOD_CONTROL_RIGHT, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 17 {MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 18 {MOD_ALT_LEFT, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_CONTROL_LEFT }, // 19 }; /** * Checks if more than one bit in data is set. * \param data value to check * \return true if more than one bit is set */ static uint8_t bitcount2(uint16_t data) { data &= (data - 1); return data != 0; } /** * check if reportBuffer contains the key * \param buffer buffer to check * \param key key to search * \return 1 if buffer contains key, 0 otherwise */ static uint8_t bufferContains(uint8_t* buffer, uint8_t key) { for (uint8_t i = 2; i < sizeof(buffer); i++) { if (buffer[i] == key) { return 1; } } return 0; } /** * Scan and debounce keypresses. This is the main worker function for normal * keyboard operation, the code contains lot of comments. Basically, it first * scans the keyboard state. If a change is detected, it initializes a counter * that is decreased each time this function is called. If the counter reaches * 1, that means that the same scan result has been scanned ten times in a row, * so we can be pretty sure that the keys are in a certain state (as in: not * bouncing). Then, the codes for keys and modifiers are searched from the two * arrays, the USB-message to send the state is prepared. The return value of * this function indicates if the message has to be sent. * \return flag to indicate whether something has changed */ uint8_t scankeys(uint8_t* reportBuffer, uint8_t* oldReportBuffer, uint8_t sizeOfReportBuffer) { static uint8_t debounce = 5; uint8_t retval = 0; for (uint8_t row = 0; row <= 19; row++) { if (row <= 7) { DDRROWS1 = (1 << row); PORTROWS1 = ~(1 << row); DDRROWS2 = 0x00; PORTROWS2 = 0xff; PORTROWS3 |= ((1 << PIND4) | (1 << PIND5) | (1 << PIND6) | (1 << PIND7)); DDRROWS3 &= ~((1 << PIND4) | (1 << PIND5) | (1 << PIND6) | (1 << PIND7)); } else if (row <= 15) { DDRROWS1 = 0x00; PORTROWS1 = 0xff; // (15 - row) looks a bit weird, you would expect (row - 8) here. // This is because pins on PORTC are ordered in the other direction // than on PORTA. With (15 - row), we have the bytes in the // resulting matrix matching the pins of the keyboard connector. DDRROWS2 = (1 << (15 - row)); PORTROWS2 = ~(1 << (15 - row)); PORTROWS3 |= ((1 << PIND4) | (1 << PIND5) | (1 << PIND6) | (1 << PIND7)); DDRROWS3 &= ~((1 << PIND4) | (1 << PIND5) | (1 << PIND6) | (1 << PIND7)); } else { DDRROWS1 = 0x00; PORTROWS1 = 0xff; DDRROWS2 = 0x00; PORTROWS2 = 0xff; // As if the case above wasn't difficult enough, on PORTD we have // to make sure that the scanning doesn't affect USB // communications, which occur on PIND0 and PIND2. PORTROWS3 |= ((1 << PIND4) | (1 << PIND5) | (1 << PIND6) | (1 << PIND7)); DDRROWS3 &= ~((1 << PIND4) | (1 << PIND5) | (1 << PIND6) | (1 << PIND7)); DDRROWS3 |= (1 << (19 - row + 4)); PORTROWS3 &= ~(1 << (19 - row + 4)); } _delay_us(30); uint8_t data = ~PINCOLUMNS; // check if we have to prevent ghost-keys uint16_t rows = (PINROWS1 << 8) | PINROWS2; // TODO if (bitcount2(~rows) && bitcount2(data)) { // ghost-key situation detected ghostmatrix[row] = data; } else { ghostmatrix[row] = 0x00; } if (data != curmatrix[row]) { // if a change was detected debounce = 10; // activate debounce counter curmatrix[row] = data; // and store the result } } if (debounce) { // Count down, but avoid underflow debounce--; } if (debounce == 1) { /* if (memcmp(oldmatrix, curmatrix, sizeof(curmatrix)) != 0) { printMatrix(); memcpy(oldmatrix, curmatrix, sizeof(curmatrix)); return 0; } */ // debounce counter expired, create report uint8_t reportIndex = 2; // reportBuffer[0] contains modifiers memset(reportBuffer, 0, sizeOfReportBuffer); // clear report buffer for (uint8_t row = 0; row <= 19; row++) { // process all rows for key-codes uint8_t data = curmatrix[row]; // restore buffer if (data != 0xff) { // anything on this row? - optimization for (uint8_t col = 0; col <= 7; col++) { // check every bit on this row uint8_t key, modifier, isghostkey; if (data & (1 << col)) { key = pgm_read_byte(&keymatrix[row][col]); modifier = pgm_read_byte(&modmatrix[row][col]); isghostkey = (ghostmatrix[row] & (1 << col)) != 0; } else { key = KEY_Reserved; modifier = MOD_NONE; isghostkey = 0x00; } if (key != KEY_Reserved) { // keycode should be added to report if (reportIndex >= sizeOfReportBuffer) { // too many keycodes if (!retval & 0x02) { // Only fill buffer once memset(reportBuffer+2, KEY_ErrorRollOver, sizeOfReportBuffer-2); retval |= 0x02; // continue decoding to get modifiers } } else { if (isghostkey) { // we're in a ghost-key situation if (bufferContains(oldReportBuffer, key)) { // this key has been pressed before, so we still send it reportBuffer[reportIndex] = key; // set next available entry reportIndex++; } } else { reportBuffer[reportIndex] = key; // set next available entry reportIndex++; } } } if (modifier != MOD_NONE) { // modifier should be added to report reportBuffer[0] |= modifier; } } } } retval |= 0x01; // must have been a change at some point, since debounce is done } return retval; }