new hardware support: IBM Host keyboard

This commit is contained in:
Ronald Schaten 2009-03-25 01:39:11 +00:00
parent 09cfed5034
commit 9fe5ef9a4e
2 changed files with 315 additions and 1 deletions

View File

@ -10,9 +10,10 @@
AVRDUDE = avrdude -p atmega32 -c usbasp AVRDUDE = avrdude -p atmega32 -c usbasp
# Options: # Options:
HWOBJECTS = modelibmmodelm.o #HWOBJECTS = modelibmmodelm.o
#HWOBJECTS = modelmayhem.o #HWOBJECTS = modelmayhem.o
#HWOBJECTS = modelsuntype5.o #HWOBJECTS = modelsuntype5.o
HWOBJECTS = modelibmhost.o
COMPILE = avr-gcc -Wall -Os -Iusbdrv -I. -mmcu=atmega32 -DF_CPU=12000000L $(DEFINES) COMPILE = avr-gcc -Wall -Os -Iusbdrv -I. -mmcu=atmega32 -DF_CPU=12000000L $(DEFINES)

313
firmware/modelibmhost.c Normal file
View File

@ -0,0 +1,313 @@
/**
* \file firmware/modelibmmodelm.c
* \brief Hardware specific part for IBM Host keyboard
* \author Ronald Schaten <ronald@schatenseite.de>
* \version $Id: modelibmmodelm.c 173 2009-02-14 21:11:43Z rschaten $
*
* License: GNU GPL v2 (see License.txt)
*/
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include <string.h>
#include <stdio.h>
#include "keycodes.h"
#include "tools.h"
#include "modelinterface.h"
/* ----------------------- hardware I/O abstraction ------------------------ */
#define PORTCOLUMNS PORTB ///< port on which we read the state of the columns
#define PINCOLUMNS PINB ///< port on which we read the state of the columns
#define DDRCOLUMNS DDRB ///< port on which we read the state of the columns
#define PORTROWS1 PORTA ///< first port connected to the matrix rows
#define PINROWS1 PINA ///< first port connected to the matrix rows
#define DDRROWS1 DDRA ///< first port connected to the matrix rows
#define PORTROWS2 PORTC ///< second port connected to the matrix rows
#define PINROWS2 PINC ///< second port connected to the matrix rows
#define DDRROWS2 DDRC ///< second port connected to the matrix rows
#define PORTROWS3 PORTD ///< third port connected to the matrix rows
#define PINROWS3 PIND ///< third port connected to the matrix rows
#define DDRROWS3 DDRD ///< third port connected to the matrix rows
uint8_t curmatrix[20]; ///< contains current state of the keyboard
uint8_t oldmatrix[20]; ///< contains old state of the keyboard
uint8_t ghostmatrix[20]; ///< contains pressed keys that belong to a ghost-key situation
void hardwareInit(void) {
// column-port is input
PORTCOLUMNS = 0xff;
DDRCOLUMNS = 0x00;
// row-ports are output
PORTROWS1 = 0xff;
DDRROWS1 = 0x00;
PORTROWS2 = 0xff;
DDRROWS2 = 0x00;
PORTROWS3 |= ((1 << PIND4) | (1 << PIND5) | (1 << PIND6) | (1 << PIND7));
DDRROWS3 &= ~((1 << PIND4) | (1 << PIND5) | (1 << PIND6) | (1 << PIND7));
// port D contains USB (D0, D2),
// and keyboard rows (D4, D5, D6, D7).
// so we call it PORTD instead of PORTJUMPERS or PORTLEDS
PORTD &= ~((1 << PIND0) | (1 << PIND2)); // deactivate pull-ups on USB-lines
DDRD |= ((1 << PIND0) | (1 << PIND2)); // set reset USB condition.
// USB reset by device only required on watchdog reset
_delay_us(11); // delay >10us for USB reset
DDRD &= ~((1 << PIND0) | (1 << PIND2)); // remove USB reset condition
// configure timer 0 for a rate of 12M/(1024 * 256) = 45.78Hz (~22ms)
TCCR0 = 5; // timer 0 prescaler: 1024
}
/**
* Print the current state of the keyboard in a readable form. This function
* is used for debug-purposes only.
*/
void printMatrix(void) {
for (uint8_t i = 0; i <= 19; i++) {
char buffer[10];
/*
sprintf(buffer, "%d%d%d%d%d%d%d%d.",
(curmatrix[i] & (1 << 0) ? 1 : 0),
(curmatrix[i] & (1 << 1) ? 1 : 0),
(curmatrix[i] & (1 << 2) ? 1 : 0),
(curmatrix[i] & (1 << 3) ? 1 : 0),
(curmatrix[i] & (1 << 4) ? 1 : 0),
(curmatrix[i] & (1 << 5) ? 1 : 0),
(curmatrix[i] & (1 << 6) ? 1 : 0),
(curmatrix[i] & (1 << 7) ? 1 : 0));
*/
sprintf(buffer, "%2x", curmatrix[i]);
sendString(buffer);
if ((i == 7) || (i == 15)) {
sendString(":");
} else {
sendString(".");
}
}
sendString("---");
}
void toggle(void) {
// not used in this model/version
}
void setSpeed(uint8_t speed) {
// not used in this model/version
}
void setLeds(uint8_t LEDstate) {
// do nothing, since we don't have fancy lights on this hardware
}
/**
* The keymatrix-array contains positions of keys in the matrix. Here you can
* see which row is connected to which column when a key is pressed. This array
* probably has to be modified if this firmware is ported to a different
* keyboard.
* \sa modmatrix
*/
const uint8_t PROGMEM keymatrix[20][8] = {
// 0 / 0x01 1 / 0x02 2 / 0x04 3 / 0x08 4 / 0x10 5 / 0x20 6 / 0x40 7 / 0x80
{KEY_KPenter, KEY_Reserved, KEY_Reserved, KEY_Reserved, KEY_Reserved, KEY_Reserved, KEY_RightArrow, KEY_Application }, // 0
{KEY_KPcomma, KEY_KP3, KEY_Reserved, KEY_KP9, KEY_Reserved, KEY_KPslash, KEY_KP6, KEY_Reserved }, // 1
{KEY_KP0, KEY_KP2, KEY_Reserved, KEY_KP8, KEY_Home, KEY_KPequals, KEY_KP5, KEY_Reserved }, // 2
{KEY_Reserved, KEY_Reserved, KEY_End, KEY_PageDown, KEY_Insert, KEY_PageUp, KEY_DeleteForward, KEY_UpArrow }, // 3
{KEY_Reserved, KEY_Return, KEY_Reserved, KEY_KP7, KEY_DELETE, KEY_KPBackspace, KEY_KP4, KEY_DownArrow }, // 4
{KEY_slash, KEY_hash, KEY_lbracket, KEY_P, KEY_minus, KEY_0, KEY_semicolon, KEY_apostroph }, // 5
{KEY_Reserved, KEY_dot, KEY_Reserved, KEY_O, KEY_Reserved, KEY_9, KEY_L, KEY_Reserved }, // 6
{KEY_Reserved, KEY_comma, KEY_rbracket, KEY_I, KEY_equals, KEY_8, KEY_K, KEY_Reserved }, // 7
{KEY_F12, KEY_F11, KEY_F9, KEY_F8, KEY_F6, KEY_F5, KEY_F3, KEY_F2 }, // 8
{KEY_F24, KEY_F10, KEY_F21, KEY_F7, KEY_F18, KEY_F4, KEY_F15, KEY_F1 }, // 9
{KEY_F23, KEY_F22, KEY_F20, KEY_F19, KEY_F17, KEY_F16, KEY_F14, KEY_F13 }, // 10
{KEY_N, KEY_M, KEY_Z, KEY_U, KEY_6, KEY_7, KEY_J, KEY_H }, // 11
{KEY_B, KEY_V, KEY_T, KEY_R, KEY_5, KEY_4, KEY_F, KEY_G }, // 12
{KEY_Reserved, KEY_C, KEY_Reserved, KEY_E, KEY_Reserved, KEY_3, KEY_D, KEY_Reserved }, // 13
{KEY_Reserved, KEY_X, KEY_Reserved, KEY_W, KEY_Reserved, KEY_2, KEY_S, KEY_Reserved }, // 14
{KEY_Euro, KEY_Y, KEY_Reserved, KEY_Q, KEY_grave, KEY_1, KEY_A, KEY_Reserved }, // 15
{KEY_Reserved, KEY_Reserved, KEY_Reserved, KEY_Reserved, KEY_Reserved, KEY_Reserved, KEY_Reserved, KEY_Reserved }, // 16
{KEY_Reserved, KEY_capslock, KEY_Copy, KEY_Tab, KEY_Again, KEY_Reserved, KEY_Paste, KEY_Find }, // 17
{KEY_Spacebar, KEY_KP1, KEY_Execute, KEY_Undo, KEY_Stop, KEY_Menu, KEY_Select, KEY_Cut }, // 18
{KEY_Reserved, KEY_LeftArrow, KEY_Reserved, KEY_KPminus, KEY_Reserved, KEY_KPasterisk, KEY_KPplus, KEY_Reserved }, // 19
};
/**
* The modmatrix-array contains positions of the modifier-keys in the matrix.
* It is built in the same way as the keymatrix-array.
* \sa keymatrix
*/
const uint8_t PROGMEM modmatrix[20][8] = { // contains positions of modifiers in the matrix
// 0 1 2 3 4 5 6 7
{MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 0
{MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 1
{MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 2
{MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 3
{MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 4
{MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 5
{MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 6
{MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 7
{MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 8
{MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 9
{MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 10
{MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 11
{MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 12
{MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 13
{MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 14
{MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 15
{MOD_SHIFT_LEFT, MOD_SHIFT_RIGHT, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_ALT_RIGHT }, // 16
{MOD_CONTROL_RIGHT, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 17
{MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE }, // 18
{MOD_ALT_LEFT, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_NONE, MOD_CONTROL_LEFT }, // 19
};
/**
* Checks if more than one bit in data is set.
* \param data value to check
* \return true if more than one bit is set
*/
static uint8_t bitcount2(uint16_t data) {
data &= (data - 1);
return data != 0;
}
/**
* check if reportBuffer contains the key
* \param buffer buffer to check
* \param key key to search
* \return 1 if buffer contains key, 0 otherwise
*/
static uint8_t bufferContains(uint8_t* buffer, uint8_t key) {
for (uint8_t i = 2; i < sizeof(buffer); i++) {
if (buffer[i] == key) {
return 1;
}
}
return 0;
}
/**
* Scan and debounce keypresses. This is the main worker function for normal
* keyboard operation, the code contains lot of comments. Basically, it first
* scans the keyboard state. If a change is detected, it initializes a counter
* that is decreased each time this function is called. If the counter reaches
* 1, that means that the same scan result has been scanned ten times in a row,
* so we can be pretty sure that the keys are in a certain state (as in: not
* bouncing). Then, the codes for keys and modifiers are searched from the two
* arrays, the USB-message to send the state is prepared. The return value of
* this function indicates if the message has to be sent.
* \return flag to indicate whether something has changed
*/
uint8_t scankeys(uint8_t* reportBuffer, uint8_t* oldReportBuffer, uint8_t sizeOfReportBuffer) {
static uint8_t debounce = 5;
uint8_t retval = 0;
for (uint8_t row = 0; row <= 19; row++) {
if (row <= 7) {
DDRROWS1 = (1 << row);
PORTROWS1 = ~(1 << row);
DDRROWS2 = 0x00;
PORTROWS2 = 0xff;
PORTROWS3 |= ((1 << PIND4) | (1 << PIND5) | (1 << PIND6) | (1 << PIND7));
DDRROWS3 &= ~((1 << PIND4) | (1 << PIND5) | (1 << PIND6) | (1 << PIND7));
} else if (row <= 15) {
DDRROWS1 = 0x00;
PORTROWS1 = 0xff;
// (15 - row) looks a bit weird, you would expect (row - 8) here.
// This is because pins on PORTC are ordered in the other direction
// than on PORTA. With (15 - row), we have the bytes in the
// resulting matrix matching the pins of the keyboard connector.
DDRROWS2 = (1 << (15 - row));
PORTROWS2 = ~(1 << (15 - row));
PORTROWS3 |= ((1 << PIND4) | (1 << PIND5) | (1 << PIND6) | (1 << PIND7));
DDRROWS3 &= ~((1 << PIND4) | (1 << PIND5) | (1 << PIND6) | (1 << PIND7));
} else {
DDRROWS1 = 0x00;
PORTROWS1 = 0xff;
DDRROWS2 = 0x00;
PORTROWS2 = 0xff;
// As if the case above wasn't difficult enough, on PORTD we have
// to make sure that the scanning doesn't affect USB
// communications, which occur on PIND0 and PIND2.
PORTROWS3 |= ((1 << PIND4) | (1 << PIND5) | (1 << PIND6) | (1 << PIND7));
DDRROWS3 &= ~((1 << PIND4) | (1 << PIND5) | (1 << PIND6) | (1 << PIND7));
DDRROWS3 |= (1 << (19 - row + 4));
PORTROWS3 &= ~(1 << (19 - row + 4));
}
_delay_us(30);
uint8_t data = ~PINCOLUMNS;
// check if we have to prevent ghost-keys
uint16_t rows = (PINROWS1 << 8) | PINROWS2; // TODO
if (bitcount2(~rows) && bitcount2(data)) {
// ghost-key situation detected
ghostmatrix[row] = data;
} else {
ghostmatrix[row] = 0x00;
}
if (data != curmatrix[row]) {
// if a change was detected
debounce = 10; // activate debounce counter
curmatrix[row] = data; // and store the result
}
}
if (debounce) {
// Count down, but avoid underflow
debounce--;
}
if (debounce == 1) {
/*
if (memcmp(oldmatrix, curmatrix, sizeof(curmatrix)) != 0) {
printMatrix();
memcpy(oldmatrix, curmatrix, sizeof(curmatrix));
return 0;
}
*/
// debounce counter expired, create report
uint8_t reportIndex = 2; // reportBuffer[0] contains modifiers
memset(reportBuffer, 0, sizeOfReportBuffer); // clear report buffer
for (uint8_t row = 0; row <= 19; row++) { // process all rows for key-codes
uint8_t data = curmatrix[row]; // restore buffer
if (data != 0xff) { // anything on this row? - optimization
for (uint8_t col = 0; col <= 7; col++) { // check every bit on this row
uint8_t key, modifier, isghostkey;
if (data & (1 << col)) {
key = pgm_read_byte(&keymatrix[row][col]);
modifier = pgm_read_byte(&modmatrix[row][col]);
isghostkey = (ghostmatrix[row] & (1 << col)) != 0;
} else {
key = KEY_Reserved;
modifier = MOD_NONE;
isghostkey = 0x00;
}
if (key != KEY_Reserved) { // keycode should be added to report
if (reportIndex >= sizeOfReportBuffer) { // too many keycodes
if (!retval & 0x02) { // Only fill buffer once
memset(reportBuffer+2, KEY_ErrorRollOver, sizeOfReportBuffer-2);
retval |= 0x02; // continue decoding to get modifiers
}
} else {
if (isghostkey) {
// we're in a ghost-key situation
if (bufferContains(oldReportBuffer, key)) {
// this key has been pressed before, so we still send it
reportBuffer[reportIndex] = key; // set next available entry
reportIndex++;
}
} else {
reportBuffer[reportIndex] = key; // set next available entry
reportIndex++;
}
}
}
if (modifier != MOD_NONE) { // modifier should be added to report
reportBuffer[0] |= modifier;
}
}
}
}
retval |= 0x01; // must have been a change at some point, since debounce is done
}
return retval;
}